Bellringer #15

13 12

The sum of two numbers is 25. The difference of the same two numbers is 1. What are the two numbers?

$$x + y = 25$$

 $x - y = 1$
 $2x + 24 = 26$
 $x = 13$

New Unit - Logic and Proofs

In this unit we will be discussing conditional statements and how to construct various types of proofs.

Conditional Statement - a statement that can be written in then form.

Short hand for if-then statements.

$$p \longrightarrow q$$

(read: If p, then q.)

KeyConcept Conditional Statement				
Words	Symbols			
An <u>if-then statement</u> is of the form <i>if p, then q.</i>	$p \rightarrow q$ read if p then q, or p implies q			
The hypothesis of a conditional statement is the phrase immediately following the word if.	p			
The conclusion of a conditional statement is the phrase immediately following the word then.	q			

EXAMPLE 1

Identify the Hypothesis and Conclusion

A. Identify the hypothesis and conclusion of the following statement.

If a polygon has 6 sides, then it is a hexagon.

EXAMPLE 1

Identify the Hypothesis and Conclusion

B. Identify the hypothesis and conclusion of the following statement.

Tamika will advance to the next level of play if she completes the maze in her computer game.

EXAMPLE 2

Write a Conditional in If-Then Form

A. Identify the hypothesis and conclusion of the following statement. Then write the statement in the if-then form.

A mammal is a warm-blooded animal.

If you have a warm-blooded animal then it's amami

EXAMPLE 2 Write a Conditional in If-Then Form

B. Identify the hypothesis and conclusion of the following statement. Then write the statement in the if-then form.

A five-sided polygon is a pentagon.

If it's a five-sided polygon than it's a pentagon

EXAMPLE 2

A. Which of the following is the correct if-then form of the given statement?

A polygon with 8 sides is an octagon.

- A. If an octagon has 8 sides, then it is a polygon.
- B. If a polygon has 8 sides, then it is an octagon.
- C. If a polygon is an octagon, then it has 8 sides.
- D. none of the above

EXAMPLE 2

B. Which of the following is the correct if-then form of the given statement?

An angle that measures 45° is an acute angle.

- A. If an angle is acute, then it measures less than 90°.
- B. If an angle is not obtuse, then it is acute.
- C. If an angle measures 45°, then it is an acute angle.
- D. If an angle is acute, then it measures 45°.

Truth Values

The hypothesis and conclusion of a conditional statement can have a truth value of true or false, as can the conditional statement itself. Consider the following example.

If Tom finishes his homework, then he will clahis room.

	Hypothesis	Conclusion	Conditional		
	Tom finishes his homework.	Tom cleans his room.	If Tom finishes his homework, then he will clean his room.		
	Т	Т	Т	If Tom <i>does</i> finish his homework and he <i>does</i> clean his room, then the conditional is true.	
7	Т	F	F	If Tom does <i>not</i> clean his room after he <i>does</i> finish his homework, then he has not fulfilled his promise and the conditional is false.	
	F	T	?	The conditional only indicates what will	
	F	F	?	happen if Tom <i>does</i> finish his homework. He could clean his room or not clean his room if he does <i>not</i> finish his homework.	

EXAMPLE 3

Truth Values of Conditionals

H = True

A. Determine the truth value of the conditional statement. If *false*, give a counterexample.

If you divide an integer by another integer, the result is also an integer.

$$\frac{2}{3} = 0.666$$

EXAMPLE 3

Truth Values of Conditionals

B. Determine the truth value of the conditional statement. If *false*, give a counterexample.

If last month was February, then this month is March.

WatchOut!

Analyzing Conditionals

When analyzing a conditional, do not try to determine whether the argument makes sense. Instead, analyze the form of the argument to determine whether the conclusion follows logically from the hypothesis.

= tre Trbe

EXAMPLE 3

Truth Values of Conditionals

C. Determine the truth value of the conditional statement. If *false*, give a counterexample.

When a rectangle has five sides, it is a parallelogram.

C=torf

True

EXAMPLE 3

A. Determine the truth value of the conditional statement. If *false*, give a counterexample.

The product of whole numbers is greater than or

B. False

EXAMPLE 3

B. Determine the truth value of the conditional statement. If *true*, explain your reasoning. If *false*, give a counterexample.

If yesterday was Tuesday, then today is Monday.

EXAMPLE 3

C. Determine the truth value of the conditional statement. If *false*, give a counterexample.

If a triangle has four sides, then it is concave.

B. False

ment	
4	

KeyConcept Related Conditionals					
Words	Symbols	Examples			
A conditional statement is a statement that can be written in the form <i>if p, then q</i> .	$p \rightarrow q$	If $m \angle A$ is 35, then $\angle A$ is an acute angle.			
The converse is formed by exchanging the hypothesis and conclusion of the conditional.	$q \rightarrow p$	If $\angle A$ is an acute angle, then $m\angle A$ is 35.			
The inverse is formed by negating both the hypothesis and conclusion of the conditional.	$\sim p \rightarrow \sim q$	If $m \angle A$ is not 35, then \angle is not an acute angle.			
The contrapositive is formed by negating both the hypothesis and the conclusion of the converse of the conditional.	~ <i>q</i> → ~ <i>p</i>	If $\angle A$ is <i>not</i> an acute ang then $m\angle A$ is <i>not</i> 35.			

Write the converse, inverse and contrapositive of onals the following.

Two angles that have the same measurement are congruent.

Converse:

If two angles are congruent, then they have the same measurement

Inverse:

If two angles do not have the same measurement, then they are not congruent. Contrapositive:

If two angles are not congruent, then they do not have the same measurement

Assignment

Practice 2-3 all

